CM1-PR ECNOMIC PROCESS Indicator

■ DESCRIPTION

CM1 series Indicator has been designed in simple function and 4 digital 20.0 mm LED displays with economic cost. They are can be programmed by tack switches that are hidden in backside of front bezel.
They are also available 1 option of 2 Relay outputs, 1 Analogue output or 1 RS485(Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission or
 communication for a wide range of industrial applications.

■ FEATURE

- Measuring 0~10V, 4~20mA(or 2 wire sensor with 24 Vdc excitation supply)
- Optional output available for one of 2 relay, analogue or RS485
- CE Approved \& RoHS

■ APPLICATIONS

2 wire sensing transducers as like as pressure, level and so on....

- Process alarm or communication for data collection.

ORDERING INFORMATION

TECHNICAL SPECIFICATION

Calibration:
A/D converter:
Accuracy:
Sampling rate:
Response time:
Display \& Functions
LED:
Display range:
Scaling function:
Decimal point:
Over range Indication:
Under range indication:
Max / Mini recording:
Low cut:

Digital calibration by front key
12 bits resolution
$\leq \pm 0.1 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$
15 cycles/sec
$\leq 100 \mathrm{msec}$.(when the AvG = " 1 ") in standard

Numeric: 4 digits, $0.8^{\prime \prime}(20.0 \mathrm{~mm})$ red high-brightness LED -1999~+9999
Lo.SC: Low Scale; Settable range: -1999~+9999
H .SC: High Scale; Settable range: -1999~+9999
Programmable from 0 / 0.0 / 0.00 / 0.000
ouFL, when input is over 110% of input range Hi - ouFL, when input is under -0% of input range Lo Maximum and Minimum value storage during power on. Lo.CUt: Settable range: -1999~+9999 counts

Reading Stable Function

Average:

RuL Settable range: 1~99 times
Moving average:
Digital filter:
$\overline{\mathrm{n}} \mathrm{Bu} \boldsymbol{\sim} \boldsymbol{u}$ Settable range: 1 (None)~99 times d.F iLt Settable range: 0 (None)/1~99 times

Control Functions(option)

Set-points:	Two set-point
Control relay:	2 Relay, FORM-C, $5 \mathrm{~A} / 230 \mathrm{Vac}, 10 \mathrm{~A} / 115 \mathrm{~V}$
Relay energized mode:	Energized levels compare with set-points:
	Hi / Lo / Hi.HLd / Lo.HLd programmable
Energizing functions:	Start delay / Energized \& De-energized delay / Hysteresis
	Energized Latch
	Start band(Minimum level for Energizing): $0 \sim 9999$ counts
	Start delay time: $0: 00.0 \sim 9$ (Minutes):59.9(Second)
	Energized delay time: $0.00 .0 \sim 9($ Minutes):59.9(Second)
	De-energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second)
	Hysteresis: $0 \sim 5000$ counts

Analogue output(option)

Accuracy:	$\leq \pm 0.2 \%$ of F.S.
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{msec}$. (10~90\% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable
	Current: 0~10mA / 0~20mA / 4~20mA programmable
Output capability:	Voltage: $0 \sim 10 \mathrm{~V}: \geq 1000 \Omega$;
Functions:	Ro.HS (output range high): Settable range: -1999~+9999
	Ro.L 5 (output range Low): Settable range: -1999~+9999
Digital fine adjust:	Ro.アro: Settable range: -1999~+9999
	Ro. 5 nn: Settable range: -1999~+9999
RS 485 Communication(option)	
Protocol:	Modbus RTU mode
Baud rate:	1200/2400/4800/9600/19200/38400 programmable
Data bits:	8 bits
Parity:	Even, odd or none (with 1 or 2 stop bit) programmable
Address:	1 ~ 255 programmable

Remote display:	to show the value from RS485 command of master
Distance:	1200M
Terminate resistor:	150Ω at last unit.
Electrical Safety	
Dielectric strength:	AC 2.0 KV for 1 min, Between Power / Input / Output / Case
Insulation resistance:	$\geq 100 \mathrm{M}$ ohm at 500 Vdc , Between Power / Input / Output
Isolation:	Between Power / Input / Relay, Analogue or RS485
EMC:	EN 55011:2002; EN 61326:2003
Safety(LVD):	EN 61010-1:2001
Environmental	
Operating temp.:	0~60 ${ }^{\circ} \mathrm{C}$
Operating humidity:	20~95 \%RH, Non-condensing
Temp. coefficient:	$\leq 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Storage temp.:	$-10 \sim 70{ }^{\circ} \mathrm{C}$
Enclosure:	Front panel: IEC 549 (IP54); Housing: IP20
Mechanical	
Dimensions:	$96 \mathrm{~mm}(\mathrm{~W}) \times 48 \mathrm{~mm}(\mathrm{H}) \times 72 \mathrm{~mm}(\mathrm{D})$
Panel cutout:	$92 \mathrm{~mm}(\mathrm{~W}) \times 44 \mathrm{~mm}$ (H)
Case material:	ABS fire-resistance (UL 94V-0)
Mounting:	Panel flush mounting
Terminal block:	Plastic NYLON 66 (UL 94V-0)
	20A/600Vac, M3.5, 12~22AWG
Weight:	310 g

DIMENSIONS

■INSTALLATION

The meter should be installed in a location that dose not exceed the maximum operating temperature and provides good air circulation.

CONNECTION DIAGRAM

Terminal blocks:
20A/600Vac, M3.5, 1.2~3.5mm ${ }^{2}$ (22~12AWG)

Optional output

1	2	3	4	5	6	7		8
\square SIGNAL INPUT			$\left.\underset{\substack{\text { Excit. } \\ \text { Supply } \\ \text { DC24V }}}{\substack{\text { AUX. POWER }}} \begin{array}{r}\text { LAC115V } \\ \text { AC230V }\end{array}\right]$					

Power and Input

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

Output (one output available of Relay, Analogue or RS485)
Relay output

	$\begin{gathered} \text { ELA } \\ \text { } \end{gathered}$		$\Gamma_{b}^{R I}$	ELAY	$\begin{gathered} 2 \\ a \end{gathered}$		
9	10	11	12	13	14	15	16

FUNCTION DESCRIPTION

Scaling function:
Setting the [Lo.5[] (Low scale) and [H .5C] (High scale) in [inPUt [urouP] to relative input signal. Reverse scaling will be done too. Please refer to the figure as below,

[^0]Display \& Functions
Max / Mini recording:
The meter will storage the maximum and minimum value in [user level] during power on in order to review drifting of PV.
Reset for Max(Mini) Hold $\bar{n} \cdot \mathbf{r} 5 \mathrm{St}$:
The maximum and minimum recording can be reset by h.rSt in [user level]

Low cut:
If the setting value is positive, it means when the absolutely value of PV \leq Setting value, the display will be 0 . If the setting value is negative, it means when the PV under setting value (PV display will be setting value.

Low Cut set to be $\mathbf{- 0 . 1 0}$

Reading Stable Function

Average:
Basically, the sampling rate of meter is 15 cycles/sec. If the function se to be 3 times, It means the meter will update of display will be 5 times/sec.

Remark: The higher average setting will cause the response time of Relay and Analogue output slower.
Moving average:
If the function to be set 3 times, the meter will update delay in first 3 samples, then it will update 15 times/sec continuously.
Moving Average set to be 3

Display Update Value
$=($ Sample $2+$ Sample $3+$ Sample 4)/3
${ }^{\text {Display Update Value }}$
= (Sample $3+$ Sample $4+$ Sample 5) $/ 3$
$=$ Display Update Valu
= (Sample 4 + Sample 5 + Sample 6)/3
Remark: The higher moving average setting wouldn't cause the response time of Relay and Analogue output slower after first 3 samples
Digital filter:
The digital filter can reduce the magnetic noise in field.

Control functions(option)

Relay energized mode: $\mathrm{Hi} / \mathrm{Lo} / \mathrm{Hi} . \mathrm{HLd} / \mathrm{Lo}$.HLd programmable
Hi H ${ }^{\prime}$ (Fig.1-(1)): Relay will energize when PV > Set-Point
Lo Lo(Fig.1-(2): Relay will energize when PV < Set-Point

Energized functions: Start delay / Energized \& De-energized delay / Hysteresis

Start delay band and Start delay time:

The functions have Been designed for,

- To avoid starting current of inductive motor (6 times of rated current) with alarm.
- If the $-Y_{\text {_ ind }}$ relay energized mode had been set to be Lo(Lo). As the meter is power on and no input to display the " 0 " caused the relay will be energized. User can set a band and delay time to inhibit the energized of relay.

Start band ry.5b (Fig.2-(1): Settable range from 0~9999 Counts
Start delay time ry.5d (Fig.2-(2): Settable range from 0.0(s)~9(m)59.9(s);

Hysteresis ry_HY (Fig.3-(1)): Settable range from 0~5000 Counts
As the display value is swing near by the set point to cause the relay on and off frequently. The function is to avoid the relay on and off frequently such as compressor......etc.,
Relay energized delay FY_.rd (Fig.3-(2)): Settable range from 0.0(s)~9(m)59.9(s);
The function is to avoid the miss action caused by noise. Sometime, the display value will swing caused by spark of contactor...etc.. User can set a period to delay the relay energized.
Relay de-energized delay ry_.Fd (Fig.3-3): Settable range from 0.0(s) 9(m) $59.9(\mathrm{~s})$;

Analogue output(option)

Please specify the output type either an o 10 V or $4(0) \sim 20 \mathrm{~mA}$ in ordering The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.
Output range: \quad Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable

Functions:

Output range high Ro.HS
Setting the Display value High to versus output range High(as like as 20 mA in 4~20
Output range low RoLS:
Setting the Display value Low to versus output range Low(as like as 4 mA in $4 \sim 20$)

The range between Ro.HS and Ro.L 5 should be over 20% of span at least; otherwise, it will be got less resolution of analogue output

Fine zero \& span adjustment:

Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key (up or down key) of meter to adjust and check the output.
Zero adjust [Ro.Pro]: Fine Zero Adjustment for Analog Output; Settable range: -1999~9999;
Span adjust [Ro.5Pn]: Fine Span Adjustment for Analog Output; Settable range: -1999~9999;

RS 485 Communication(option)

The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's convenience to remote monitoring, display for reading

OPERATING KEY

＊Please access to the Programming Level to check and set the parameters when users start to run the meter

The meter has designed operation similar as PC＇s $\Leftrightarrow \Leftrightarrow$ and Enter ．In any page，press 畨key means＂enter＂or＂confirm setting＂，and press 园key means＂escape（（Esc）$)$＂or＂shift＂．
In Programming Level，the screen will return to Measuring Page after do not press any key over 2 minutes，or press for 1 second．

	Function Index	Setting Status
	（1）In any page，press 畼 to access the level or function index （2）From the function index to access setting status	（3）Setting Confirmed，save to EEProm and go to next function index
$\square(=\square)$ Shift key	（1）In measuring page，press for 1 second to access user level． （2）In function index，press $\quad 1$ for 1 second to go back upper level． （3）In function group index，press for 1 second to go back measuring page	（4）In setting status，press to Shift the setting position． （5）In setting status，press for 1 second to abort setting and go back this function index．
$\begin{array}{\|l} \triangle(=\triangle) \\ \text { Up key } \end{array}$	（1）In function index，press to go back to previous function index	（2）In setting status for function，press to select function （3）During number Setting，press can roll the digit up
$\nabla(=\nabla)$ Down key	（1）In Function Index Page，press will go to the next Function Index Page．	（2）In setting status for function，press to select function （3）During number Setting，press can roll the digit down．

－FRONT PANEL

Number screen
$0.8^{\prime \prime}(20.0 \mathrm{~mm})$ red high－brightness LED for 5 digital present value．

I／O Status Indication

Relay Energized： 2 square red LED
RL1 display when Relay 1 energized；
RL2 display when Relay 2 energized；
－RS485 Communication： 1 square orange LED
COM will flash when the meter is receive or send data，and COM flash quickly means the data transient quicker．

Stickers：
Each meter has a sticker for engineer units．

$\sim \mu \mathrm{A}$	$\sim \mathrm{mA}$	～A	$\sim K A$	$=\mu \mathrm{A}$	$=\mathrm{mA}$	$=\mathrm{A}$	$=K$	
$\sim \mu \mathrm{V}$	$\sim \mathrm{mV}$	$\sim \mathrm{V}$	$\sim \mathrm{KV}$	$=\mu \mathrm{V}$	$=\mathrm{mV}$	$=\mathrm{V}$	$=\mathrm{KV}$	
Ahr	A min	Asec	Arms	Vrms	A／mA	WIA	Var／A	
W	KW	MW	WH	KWH	MWH	WIWH	WNar	
Var	KVar	MVar	QH	KQH	MQH	$\cos \theta$	VarNarH	
VA	KVA	MVA	VAH	KVAH	MVAH	θ	KVarH	
Hz	PF	KA	KV	KHz	MVarh	KM／hr		
A	mA	V	mV	Ω	$\mathrm{K} \Omega$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	\％RH
RPM	M／min	Y／min	F／min	M／sec	\％	－	M Ω	
Kglcm^{2}	Bar	mm $\mathrm{H}_{2} \mathrm{O}$	mmHg	KPA	mmAq	PSI	mBar	PA
M ${ }^{3} / \mathrm{min}$	ml／min	Ton／D	L／min	Torr	M ${ }^{3} / \mathrm{hr}$	$\mathrm{Kg}-\mathrm{cm}$	cmHg	
mm	cm	M	KM	ft	Yard	ppm	ppb	C．C
g	KG	Ton	T－cm	NT－cm	PH	MPM	L	

\square Operating Key： 4 keys for \square Enter（Function）／\square Shift（Escape）$/$
Dup key／Down key
－Pass Word：Settable range：0000～9999；
User has to key in the right pass word so that get into ［Programming level］．Otherwise，the meter will go back to measuring page．If user forgets the password，please contact with the service window．

■ OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

Plesae refer to operating manual for detail description

[^0]: *Too narrow scale may course display lower resolution.

