ES2-MC Multifunction A/B Phase Counter

■DESCRIPTION

The CS2-MC provides dual input(A/B phase) and display with high speed, counting, control and communication (Modbus RTU mode) of Pulse from encoder, proximity switch, photo switch or flow meter for counting, length and position control. There are 3 external control input (DI) in standard and the optional 4 Relay, 1 Analogue, 1 Pulse and RS485 port available. The relays are also support N, C, R, E mode and Hi/Lo
 energized for batch / totalizer and position control.

■ FEATURE

- Measuring Pulse $0.01 \mathrm{~Hz} \sim 6 \mathrm{KHz}(\mathrm{A} / \mathrm{B}$ phase: 3 KHz for each channel); Contact / NPN / PNP / Voltage Pulse can be switch on rear of meter
- Double figures, can be set to display the Totalizer , Batch , Batch count
- CS2-MC Multifunction Counter design of the two groups pulse signal input, coupled with Proximity switch, Photoelectric sensor, Encoder \qquad etc., execution count(plus / less count), location-based, batch and other displays, control, and remote communication capabilities.
- 4 relay can be individual programmed for N/R/C/E/do mode with timer function.
- 3 external control input can be individual programmed for Reset, Gat of totalizer and/or batch
- Analogue Output and RS485(Modbus RTU mode) available in option

- Application

- With the proximity switches, photoelectric switches, encoders ...etc., do the count (plus / less count), length, location, location,,batch etc. displays, control, and remote communication capabilities.

■ORDERING INFORMATION

TECHNICAL SPECIFICATION

Input

Input Frequency	Input Mode	Input Level
$0.01 \mathrm{~Hz} \sim 50 \mathrm{~Hz}$	Mech. Contact	
Up or Down Mode: $0.01 \mathrm{~Hz} \sim 6 \mathrm{kHz}$ A/B Phase Mode: $0.01 \mathrm{~Hz} \sim 3 \mathrm{KHz}$ (each)	$\begin{array}{\|l\|} \hline \text { NPN } \\ \hline \text { PNP } \\ \hline \end{array}$	High Level: 8~12V; Low Level: $0.0 \sim 4.0 \mathrm{~V}$ (with excitation supply 12 Vdc)
	Voltage Pulse	High Level: over $2 / 3$ of input level Low Level: under $1 / 3$ of input level
Input Mode(NPN, PNP, Contact) \& Level($5 \mathrm{Vp}, 12 \mathrm{Vp}, 24 \mathrm{Vp}$) changeable by dip switch of rear terminal block.		

Input range:

Input type:

Up or Down Mode: $0.01 \mathrm{~Hz} \sim 6 \mathrm{kHz}$
A/B Phase Mode: $0.01 \mathrm{~Hz} \sim 3 \mathrm{kHz}$ (each channel) \} when RS485 communication, limited to $0.01 \mathrm{~Hz} \sim 2 \mathrm{kHz}$ (each channel)
7 type selectable:
Rb.P-1: A/B phase with Quadrature $\times 1$
Rb.P-2: A/B phase with Quadrature $x 2$
Rb.P-4: A/B phase with Quadrature $\times 4$
idu: dual individual input
[ñd: Anti-Coincidence Add/Subtract
UP: up counting
doUn: down counting

Trigger mode:

	RU-bd: A is low level to high level and B is high level to low level Rd-bU: A is high level to low level and B is low level to high level Rd-bd: A and B are high level to low level
Display \& Functions	
LED:	Numeric:
	Up screen: 10 digits, $0.28^{\prime \prime}$ red high-bright LED Down screen: 6 digits, 0.28 " green high-bright
	Relay output indication: 4 square red LED
	RS 485 communication: 1 square orange LED
	E.C.I. function indication: 3 square green LED
Up screen selection:	Can be set show Totalizer or Batch count
Down screen	Can be set show Batch
Display the multiplier:	[nt.SF set range: 0.10000~9.99999
	Display value=pulse x multiplier([nt.5F)
Decimal Point:	Settable: 0 / 0.0 / 0.00 / 0.000/0.0000/0.00000
Over Flow indication:	Fixed Re-cycle counting
Default start value fun.	Settable 0~999999

Control Functions(option)	
Relay:	4 relay
	relay 2 \& 3: FORM-C, 5A/230Vac, 10A/115V relay 1 \& 4: FORM-A, $1 \mathrm{~A} / 230 \mathrm{Vac}, 3 \mathrm{~A} / 115 \mathrm{~V}$
Energized mode:	N/R/C/E mode or DO mode
N/R/C / E mode:	[rY.ot] Period of Relay on: 0:00.0~9(m):59.9(s)
Do Fun.:	Energized by RS485 command of master
Analogue output(option)	
Accuracy:	$\leq \pm 0.1 \%$ of F.S.; 16 bits DA converter
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{~m}$-sec. (10~90\% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable
	Current: 0~10mA / 0~20mA / 4~20mA
Output capability:	Voltage: 0~10V: $\geq 1000 \Omega$;
	Current: 4(0) 20mA: $\leq 600 \Omega$ max
Functions:	[Ro.L S] output range low to versus the value of parameter
	Settable range -199999~999999(Batch) / -1999999999~9999999999(Total)
	[O OHS] output range high to versus the value of parameter
	Settable range -199999-999999(Bath) /
	-1999999999~9999999999(Total)
Digital fine adjust:	[$\mathrm{Ho} . \mathrm{Pr}$ o] Settable range: $-32768 \sim 32767$
	[Ho .5 SP] Settable range: $-32768 \sim 32767$
RS 485 Communication(option)	
Protocol:	Modbus RTU mode
Baud rate:	1200/2400/4800/9600/19200 programmable
Data bits:	8 bits
Parity:	Even \ Odd or none (with 1 or 2 stop bit) settable
Address:	1 ~ 255 programmable
Distance:	1200M max
Terminate resistor:	150Ω.
Power	
Power supply:	AC 85~265V / DC 100~300V
Excitation supply:	DC $12 \mathrm{~V} / 30 \mathrm{~mA}$
Power consumption:	$\leq 5.0 \mathrm{VA}$ maximum
Back up memory:	EEPROM
Electrical Safety	
Dielectric strength:	AC 2.0 KV for 1 min,, Between Power / Input / Output / Case
Insulation resistance:	$\geq 100 \mathrm{M}$ ohm at 500 Vdc , Between Power / Input / Output / Case
Isolation:	Between Power / Input / Output
EMC:	EN 55011:2002; EN 61326:2003
Safety (LVD):	EN 61010-1:2001
Environmental	
Operating temp.:	0~60 ${ }^{\circ} \mathrm{C}$
Operating humidity:	20~95 \%RH, Non-condensing
Temp. coefficient:	$\leq 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Storage temp.:	$-10 \sim 70{ }^{\circ} \mathrm{C}$
Enclosure:	Front panel: IEC 549 (IP54); Housing: IP20
Vibration test:	$1 \sim 800 \mathrm{~Hz}, 3.175 \mathrm{~g}^{2} / \mathrm{Hz}$
Mechanical	
Dimensions:	$96 \mathrm{~mm}(\mathrm{~W}) \times 48 \mathrm{~mm}(\mathrm{H}) \times 120 \mathrm{~mm}$ (D)
Panel cutout:	$92 \mathrm{~mm}(\mathrm{~W}) \times 44 \mathrm{~mm}$ (H)
Case material:	ABS fire-resistance (UL 94V-0)
Mounting:	Panel flush mounting
Terminal block:	Plastic NYLON 66 (UL 94V-0); 10A/300Vac, M2.6, $1.3 \mathrm{~mm}^{2} \sim 3.5 \mathrm{~mm}^{2}$ (16~12AWG)
weight:	310 g

FRONT PANEL

DIMENSIONS

INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation

■ CONNECTION DIAGRAM

Count/Pulse
Signal input

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker

\triangle Connected to $11(A+I N), 12(B+I N)$ pin signal level required toclear the high and low potential,

Do not floating (high impedance).

Analog retransmit output

FUNCTION DESCRIPTION

Display \& Functions

Display the multiplier:
Display value=pulse x multiplier(($[n t .5 F$)
Shows the multiplier can be set to the range
of 0.100000-9.99999with a different decimal point position Default start value fun.:
Counter reset after the [inPUt GroUP]] in [oFSEt set the startingvalue (for example: 200),Will be starting from the default value (200) number of the startingproduct.

Control Functions

Relay energized mode:
This table provides four relay output options, you can choose the corresponding control volume and mass execution N/R/C / E four control output

CMODE:
When the ∞ nditio n of Set Po int is met

1. The relay will be en ergized; until the
time is over Relay output time (rY.1(or 2).ot).
2. The totalize r will be reseted to " 0 ",
then counts-up from " 0 ".

MODE

When the count reaches the set value:

1. relay output, until r Y.ot (Relay ou tput time) to set time ha s elapsed, the relay will revert to the (de-en ergized)
2. count the nu mber will continue to plot, u ntil the
\rightarrow button manual reset by the panel - reverted by the ECI terminal short circuitC ount value from "0" to re-plot several

Energized by RS485 command of master. The function was designed to get remote control by RS485 command of master. The typical application is to control a switch in field from computer center as like as digital output(DO) of PLC.

External Control Inputs (ECI):

The three external control inputs are individually programmable to perform specific meter control or display functions. All E.C.I. have been designed in level trigger actions. Please pay attention, the ECI1 or ECI2 input will be disable while UP or Down Key has been set to be "YES".

Input mode: 2 ECl points, Contact Implementation can be set individually and the total volume-related functions
Power or batch power reset:
Total suspended and / or batch several the plot reset of the total and / or batch to " 0 "

Enter the confirm time: This function is mainly to avoid the scene of the disturbance caused by the malfunction surge; Please
note, thistime setting is every 16 milliseconds (16 msecond) for
(Jnits nlease refer to the followind examnle
[dEbn[] set to be 5, it means

$$
5 \times 16 \text { msecond }=80 \text { msecond }
$$

That, contact input must be greater than 60 msec ond, the instrument
Will identify the correct input, otherwise ignore this input.

RS 485 communication(option)

The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's not only convenience to remote monitoring, display for reading and ECI status, but also for remote control in the case that doesn't have any DIO device in the field.

Analogue output(option)

Please specify the output type either an $0 \sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$ in ordering. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.
Output range: \quad Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable
Fun.: Ao.HS: To setting the Display value High to versus output range High(as like as 20mA in 4~20)
Ao.LS: To setting the Display value Low to versus output range Low(as like as 4mA in 4~20)

The range between Ao.HS and Ao.LS should be over 20\% of span at least; otherwise, it will be got less resolution of analogue output.

Ao.LMt(Output High Limit): can be set range0.00~ 110.00%; User can set the high limit of output to avoid a damage of receiver or protection system. ${ }^{\circ}$

Fine zero \& span adjustment:

UP mode:

DOWM mode:

Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key(up or down key) of meter to adjust and check the output.

Counting

UP/DOWN Individual (Individual counting model):

